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Summary 
 
Kohonen's Self Organizing Feature Maps (SOFM) 
and other unsupervised clustering methods generate 
groups based on the identification of various 
discriminating features. These methods seek an 
organization in the dataset and form relational 
organized clusters. However, these clusters may or 
may not have any physical analogues. A calibration 
method that relates SOM clusters to physical reality is 
desirable.   This calibration method must define the 
relationship between the clusters and the observed 
physical properties; it should also provide an estimate 
of the validity of the relationships.   With the 
development of a calibrated relationship, the whole 
dataset can be classified. The principal steps, 
therefore, are the Three-C's "Clustering, Calibration 
and Classification". 
 
The clustering step reduces the multiple dimensions 
of the data description into logically smaller groups. 
Each original data point defined by multiple attributes 
is reduced to one or two-dimensional relational 
groups. This establishes some logical clustering and 
reduces the complexity of the classification problem. 
Furthermore, calibration should be more successful 
due to the consideration of less variability in the data.  
 
Here in, a simple calibration method is proposed that 
employs Bayesian logic to provide the relationship 
between cluster centers and the known reservoir 
properties. The output will give the most probable 
calibration between each Self-Organized Map node 
and the wellbore-measured lithology. The second part 
of the output will give the probability of the calibration.  
 
Method 
 
A Bayesian decision is based on the knowledge of the 
probability density function of each class. The 
decision boundary between classes is located at the 
point where the probability density of adjoining 
classes is equal.  
 
Figure 1 shows three different class probability 
densities. The Bayesian decision boundaries are 
located where the probabilities of different classes are 
equal. This is a very intuitive concept and easy to 

accept. Samples will be classified as belonging to the 
class with highest probability density.  
 
In the method presented here, we will use Bayesian 
logic to establish the relationship between lithology 
classes and the SOM neural nodes. To establish such 
a relationship, we will need to compute the probability 
density function of each class in the SOM topology. 
The Euclidean distance and the scaled Gaussian 
function as the probability density estimator is 
employed.  
 
Let w(i,j)  represent the SOM i'th weight of j'th 
neuron and , X(i,n) represent the i'th attributes of the 
n'th lithology class.  The Euclidean distance between 
the neural node and the input data sample is given 
by: 
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where NI is the number of attributes (number of input 
dimensions). 
 
 
During the SOM iteration, the Euclidean distances 
between data points and each neural node are 
computed. The node with the closest distance to the 
data is declared the winning neuron and its weights 
are adjusted to be closer to the input data. Its 
topologically neighboring neurons are also adjusted, 
but in a reduced amount which is proportional to their 
distance to the winning neuron. Iteration continues 
until an acceptable convergence is reached. Because 
the input data is not perfectly organized, we expect 
the clustering around each neuron to exhibit some 
scatter, i.e. some variance other than zero.  In the 
calibration stage we need to determine the degree of 
convergence, so our probability estimate will have 
some basis. The average variance of clustering will 
give us a measure of the distance between SOM 
neuron cluster centers. This average will control the 
shape of the Gaussian function, and be used for a 
control distance of 50% probability. It is considered 
that each data point is valid with some probability. It 
could belong to any one of the clusters of the SOM. 
However, the probability of belonging to any group is 
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a function of the distance to the neuron. Thus, the 
probability is computed as a Gaussian function of the 
distance. 
 
 
In the first pass through the data the average Euclidean 
distance between the input data samples and the winning 
neurons is computed.  This in turn determines the Gaussian 
shape factor a. In the second pass this shaping factor a is 
used in computation of the probability at each SOM 
neuron.  
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where  d(j,n) is the distance between n'th input data and 
j'th neuron. 
 
This suggests that the closer the data point is to a node, the 
higher the probability of a correct calibration.  The 
probability map is then generated, with the same topology 
as the SOM for each lithology class. For each lithology 
class data point the distance and the (Gaussian function) 
probability for each SOM neural node is computed. We 
accumulate these probabilities for data samples for that 
particular lithology class. Finally, we compute a scalar and 
divide the accumulated probabilities so the sum is equal to 
unity (100%). This map now represents the probability 
density of the particular lithology class. 
 
Comparison of the lithology probability map with the 
maximum probability map (MPM) is accomplished using 
Bayesian logic. We update the MPM if the lithology 
probability map contains a higher probability than the 
MPM and we also update the classification number, 
otherwise the MPM is left unaltered.  This procedure is 
repeated for all classes. Upon completing the computation 
for all of the classes, a table of classes with the highest 
probability for each SOM neural node and a table of 
corresponding probability densities, results. Because the 
data is given in list form containing the attribute values and 
corresponding lithology class, calibration could be 
conducted on multi-well data and for both deviated and 
horizontal wells, where synthetics are difficult to generate. 
 
The Three-C procedure is analogous to the regularized 
Radial Basis Function Networks (RBF). The original form 
of RBF uses each training data sample as the center of each 
neuron in the Hidden Layer. This will result in an 
enormous amount of hidden layer neurons. The 
regularization process reduces the number of neurons to a 
level that represents the input data field by a minimum 
number of neurons. Following this reduction, the output 
layer weights are computed to linearly interpolate the 
desired results. Here in, a SOM clustering in the first stage 

is used, which is similar to a regularization of the RBF 
network. The calibration stage is performed via Bayesian 
logic rather than linear interpolators. 
 
 
Example 
 
The geologic setting for this test was a North Sea tertiary 
turbidite system.  The seismic survey covering the area of 
interest was about 325 square km.  There were 4 wells 
inside the survey area, two of which had encountered oil 
saturated pay sands.  These wells had a full suite of high 
quality logs, including dipole shear wave logs in the two 
producing wells.    
 
The logs were used to classify 4 different lithologies, shale, 
siltstone, wet sand, and oil sand. A suite of post-stack 
seismic attributes were computed on the 3D data volume 
and used as input to the Kohonen SOM with a 10x10 
cluster topology. A probability field for each class was 
generated and scaled so the sum was equal to 1.0 
representing 100 percent probability. The probability 
function was generated using the RMS clustering distance 
as the 50 percent probability value. This gives us the value 
of Gaussian shaping factor. Smaller RMS values will make 
the Gaussian curve sharper, and larger values will produce 
a smoother curve. The maximum probability for each 
cluster center is determined by comparison. The program 
displays final calibration and related probabilities as shown 
in Figure 4. 
 
These classifications are shown as a time section from the 
3D reservoir volume in Figure 5.  The red colored zones 
indicate the oil sands.  When compared to classification 
from other methods such as acoustic and elastic impedance 
inversion (Mukerji, et al., 1998), the results are 
comparable, even though in this case only post-stack 
seismic data volume was used.  
 
Conclusions 
 
The calibration step connects the clustering and 
classification steps in highly logical manner. The procedure 
will perform a calibration for all SOM neurons regardless 
of the size and topology of the network.  Any wellbore 
configuration can be accommodated; even those highly 
deviated cases where the generation of synthetic for 
calibration purposes may be difficult.  
 
This procedure simplifies the Probabilistic Neural Network 
(PNN) approach. In the PNN procedure each training data 
point is considered a valid point in data space and a 
corresponding probability function is generated in N-
dimensional space. In the current implementation, the 
clustering at an SOM dimension where all attributes are 
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well organized is conducted. This reduces the 
dimensionality of the problem and the computation time. 
Since the data is clustered by the SOM, the calibration is 
less complicated, and most probably, more accurate.  
 
The new method was tested on a 3D seismic data volume 
with 4 wells.  The results appear to be in agreement with 
the wells and similar to results obtained by statistical 
methods applied to acoustic and elastic impedance 
volumes. 
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Figure 1.  Bayesian Boundaries  for Three Different                   Figure 2.  Input Vector, Neural Weight Vector and Euclidean  
                Probability Densities                                                                   Distance 
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Figure 3  Computation of Probability by Euclidean Distance and Gaussian Function 
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Figure 4: Kohonen SOM with 10x10 cluster map  calibrated into 4 lithologic classes.  Each class is shown by  a 
specific color for ease of recognition. Number on each cluster center represent relative probability (Total adds 
up to 1.0)    
 

 
 
 

Figure 5:  Time slice through 3D seismic volume showing spotty distribution of oil sand class (red) and location of 4 wells. 
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